Hodge strings ” and elements of K . Saito ’ s theory of the Primitive form

نویسنده

  • A. Losev
چکیده

The " Hodge strings " construction of solutions to associativity equations is proposed. From the topological string theory point of view this construction formalizes the " integration over the position of the marked point " procedure for computation of amplitudes. From the mathematical point of view the " Hodge strings " construction is just a composition of elements of harmonic theory (known among physicists as a t-part of t − t * equations) and the K.Saito construction of flat coordinates (starting from flat connection with a spectral parameter). We also show how elements of K.Saito theory of primitive form appear naturally in the " Landau-Ginzburg " version of harmonic theory if we consider the holomorphic pieces of germs of harmonic forms at the singularity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thomas hyperplane sections for primitive Hodge classes

R. Thomas proved that the Hodge conjecture is essentially equivalent to the existence of a Thomas hyperplane section having only ordinary double points as singularities and such that the restriction of a given primitive Hodge class to it does not vanish. We show that the relations between the vanishing cycles associated to the ordinary double points of a Thomas hyperplane section have the same ...

متن کامل

Generalized Thomas hyperplane sections for primitive Hodge classes

R. Thomas (with a remark of B. Totaro) proved that the Hodge conjecture is essentially equivalent to the existence of a hyperplane section, called a generalized Thomas hyperplane section, such that the restriction to it of a given primitive Hodge class does not vanish. We show that the relations between the vanishing cycles have the same dimension as the kernel of the cospecialization morphism ...

متن کامل

Bulk viscous string cosmological models in Saez – Ballester theory of gravitation

Spatially homogeneous Bianchi type-II, VIII and IX anisotropic, as well as isotropic cosmological models can be obtained in a scalar tensor theory of gravitation proposed by Saez and Ballester (1986) when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. All the models obtained and presented here are expanding, non-rotating and accelerating...

متن کامل

DEVELOPMENT IN STRING THEORY

The string theory is a fast moving subject, both physics wise and in the respect of mathematics. In order to keep up with the discipline it is important to move with new ideas which are being stressed. Here I wish to give extracts from new papers of ideas which I have recently found interesting. There are six papers which are involved: I ."Strings formulated directly in 4 dimensions " A. N...

متن کامل

Generalized Thomas hyperplane sections and relations between vanishing cycles

R. Thomas (with a remark of B. Totaro) proved that the Hodge conjecture is essentially equivalent to the existence of a hyperplane section, called a generalized Thomas hyperplane section, such that the restriction to it of a given primitive Hodge class does not vanish. We study the relations between the vanishing cycles in the cohomology of a general fiber, and show that each relation between t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998